29. a. Air at 20°C at atmospheric pressure flows over a flat plate at a velocity of 3.5m/s. If the length of plate is 0.4m and width of the plate is 0.5m. Calculate the following if the plate is maintained at 60°C. (i) boundary layer thickness (ii) local friction and average friction coefficient (iii) average heat transfer coefficient (iv) heat transfer rate (v) total drag force on plate.

(OR)

- b. A steam pipe of 0.1m diameter runs horizontally in a room at 23°C. Outside surface temperature of pipe is maintained at 165°C. Determine (i) the heat loss per unit length of pipe (ii) if the surface temperature is reduced to 80°C by adding 1.5cm thickness of insulation. Find the percentage of reduction in heat transfer.
- 30. a. Two parallel plates 3m×2m are spaced at 1m apart. One plate is maintained at temperature 500°C and emissivity 0.3, while the other plate is maintained at temperature 200°C and emissivity at 0.5. The plates are located in a large room and walls are maintained at 40°C. If the plate exchanges heat with each other and with room, find the heat lost by the hotter

- b. Two large parallel plates are maintained at 800°C and 300°C. Emissivity of the plates are 0.3 and 0.5. (i) find net radiant heat exchange for unit area (ii) percentage of reduction in heat transfer when a polished aluminium radiation shield of emissivity 0.06 is placed between them (iii) temperature of shield.
- 31. a. Water at atmospheric pressure and saturated temperature is boiled in a 0.25 m diameter, electrically heated, mechanically polished stainless steel pan. The heated surface of the pan is maintained at a uniform temperature of 116°C. Calculate (i) heat flux (ii) rate of evaporation from pan (iii) peak heat flux.

- b. In a counter flow double pipe heat exchanger, water is heated from 25°C to 75°C by an oil with a specific heat of 1.45kJ/kgK and mass flow rate of 0.9 kg/sec. The oil is cooled from 230°C to 150°C. if the overall heat transfer coefficient is 425 W/m²K. Calculate (i) rate of heat transfer (ii) mass flow rate of water (iii) surface area of heat exchanger.
- 32. a. Water in the tank 20mm deep is filled with water to 10 mm level and exposed to dry air at 40°. Calculate the time required for all the water to evaporate. What will be the time requirement for the evaporation if the air temperature is 80°C? Take diameter of tank = 2m, D_{ab} , (water to air) = 0.0925m²/hour.

(OR)

b. CO2 and air experience equimolar counter diffusion in a circular tube whose length and diameter are 1.2 m and 60 mm. The system is at a total pressure of 1 atm and temperature of 273K. Ends of tube are connected to large chambers. Partial pressure of CO₂ at one end is 200 mm of Hg, while at other end is 90 mm of Hg. Calculate (i) mass transfer rate of CO₂ (ii) mass transfer rate of air.

Page 4 of 4 15NF5ME1021

Reg. No.			

B.Tech. DEGREE EXAMINATION, NOVEMBER 2016

Fifth Semester

ME1021 - HEAT AND MASS TRANSFER

(For the candidates admitted during the academic year 2013 - 2014 and 2014 - 2015) (Use of approved steam table and Heat and mass graph table is permitted)

_	-			
- 19	м	-	4	-

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours	Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer	ALL	Questions
--------	-----	-----------

1.	The	number whic	h is releva	nt in tra	ansient h	eat co	onduction is
	(A)	Reynold's n	umber			(B)	Prandtl number
	(C)	Grashoff nur	mber				Fourier number
2.	Upto	critical radiu	us of insula	ation			
	(A)	Added insul	lation will	increa	ase heat	(B)	Added insulation will decrease heat loss
	(C)	Convection than conduct		will	be less	(D)	Heat flux will decrease
3.	Basi	c law of heat	conduction	n is			
		Fourier's lay				(B)	Stefen's law
	(C)	Newton's la	W	2		(D)	First law of thermodynamics
4.		mal diffusivi					
	Whe	ere K-thermal	conductiv	rity, ρ-	density,	Cp-	specific heat.
	(A)	K/pCp				(B)	ρCp
	(C)	ρK				(D)	$\frac{K}{KCp}$
		$\frac{\rho K}{Cp}$					$\frac{1}{\rho}$
5.	The	ratio of energ	gy transfer	red by	convection	on to	that by conduction is called
		Stanton num		,			Nusselt number
	(C)	Biot number	r			(D)	Preclet number
6.			_				maintained at a temperature of 250°C. If the C, the heat transfer rate is
		215.6 kW					2.56 kW
	(C)	2.156 kW					21.56 kW
7.	In na	atural convec	tion Nusse	elt num	ber is a f	uncti	on of
	(A)	Reynold's number	number	and	Prandtl	(B)	Weber number and Reynold's number
	(C)	Grashoff's number	number	and	Prandtl	(D)	Weber number and prandtl number

8.	A gr	ey body is one whose absorptivity		
	(A)	Varies with temperature	(B)	Varies with wavelength of incident ray
	(C)	Is equal to emissivity	(D)	Does not vary with temperature and wavelength of incident ray
9.	The	ratio of energy absorbed by the bod	y to	the total energy falling on it is known a
	(A)	Emissivity	(B)	Absorptivity
	-	Emissive power	(D)	Absorptive power
10.			n en	ergy is inversely proportioned to the absolute
	-	perature. Above element is		G. C. 1.1
		Wein's law	. ,	Stefan's law
	(C)	Kirchoff's law	(D)	Plancb's law
11.		iation shield should have	_	
		High emissivity		Low emissivity
	(C)	Low reflectivity	(D)	High reflectivity
12.		ody which reflects entire radiation incid		
		Black body	'	White body
	(C)	Gray body	(D)	Transparent body
13.		pwise condensation usually occurs on _		
		Glazed surface	, ,	Smooth surface
	(C)	Oil surface	(D)	Coated surface
14.		excess temperature in free convection		
	, ,	5°C	, ,	10 °C
	(C)	30 °C	(D)	50 °C
15.	The	overall heat transfer coefficient is high	est ir	a heat exchanger when
	(A)	Heat is transferred from steam to oil	(B)	Heat is transferred from steam to water
	(C)	Heat is transferred from hot gas to tar	(D)	Heat is transferred from air to CO ₂
16.	Auto	omobile radiator is a heat exchanger of		
	(A)	Counter flow type	(B)	Parallel flow type
	(C)	Cross flow type	(D)	Regenerator type
17.		hysical term, Schmidt number is		_
	(A)	Thermal diffusivity	(B)	Thermal diffusivity
		Mass diffusivity		Momentum diffusivity
	(C)	Momentum diffusivity	(D)	Mass diffusivity
	, ,	Mass diffusivity		Thermal diffusivity
18	Mae	s transfer between two fluids phase doe	es no	t necessarily depends on
10.		Physical properties		Chemical properties
		Degree of turbulence		Interfacial area
	(0)	Degree of tarbarence	(1)	inciracia area

19. The diffusivity D_{AB} (for component A diffusing in B) is equal to the diffusivity D_{BA} (for component diffusing in A) for binary mixture

(A) Newtonian liquids

(B) Non-Newtonian liquids

(C) Ideal gas

(D) Real gas

20. FICKS law of diffusion $\frac{ma}{D}$ =

(A)
$$-D_{AB}\frac{dC_A}{dx}$$

(B)
$$D_{AB} \frac{dC_A}{dx}$$

(C)
$$D_{AB} dC_A$$

(D)
$$D_{AB} dx$$

PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions

- 21. What is biot number and Fourier number? Write down their physical significance.
- 22. An electric current is passed through a plane wall of thickness 25 mm and 120 mm wide, which is used to heat a fluid at 30°C. The heat generation is 65×10³W/m³. Thermal conductivity of plate is 25 W/mK. Calculate the heat transfer coefficient to maintain the temperature of plate below 150°C.
- 23. What is entrance region and fully developed region in the internal flow?
- 24. Air at 30°C flows over a flat plate at a speed of 1.2 m/sec. Calculate hydrodynamic boundary layer and thermal boundary layer at a thickness of 0.15m and 0.3m.
- A black body at 2500 K emits radiation. Calculate the wavelength at which emission is maximum, maximum emissive power and total emissive power.
- 26. Explain why C_{min} is used instead of C_{max} in the maximum possible heat transfer calculation in a heat exchanger.
- 27. Explain the various regimes of saturated pool boiling for a platinum wire submerged in water.

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

28. a. A furnace wall is made of insulation brick of 0.12 m thick (K=0.6 W/mK), fire brick of 0.10 m thick (k=0.8W/mK) and backed by 0.01m thick metal plate (K=46W/mK). The insulation brick is reposed to air at 30°C. The gas side heat transfer coefficient is 100W/m²K and air side is 15W/m²K. The contact resistance between insulation brick and fire brick is 2.6×10⁻⁴m²K/w. The contact resistance between insulation fire brick and metal plate is 1.5×10⁻⁴m²k/w. Calculate (i) heat flow through the furnace wall/m². (ii) overall heat transfer coefficient (iii) temperature at the interface.

(OR)

b. A cylinder 1m long and 0.05 m in diameter is placed in atmosphere at 45°. It is provided with 10 longitudinal straight fins of material having thermal conductivity 120 W/mK. The height of fin is 0.02 m and thickness is 2×10⁻³m. Heat transfer coefficient between cylinder and atmospheric air is 17W/m²K. Calculate the rate of heat transfer and temperature at the end of fins. If the surface temperature of cylinder is 150°C.